Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case
نویسندگان
چکیده
The e ciency of numerically solving time-dependent partial di erential equations on parallel computers can be greatly improved by computing the solution on many time-levels simultaneously. The theoretical properties of one such method, namely the discrete-time multigrid waveform relaxation method, are investigated for systems of ordinary di erential equations obtained by spatial nite element discretisation of linear parabolic initial boundary value problems. The results are compared to the corresponding continuous-time results. The theory is illustrated for a one-dimensional and a two-dimensional model problem and checked against results obtained by numerical experiments.
منابع مشابه
Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems
Abstract In this paper we prove the uniform convergence of the standard multigrid V-cycle algorithm with Gauss-Seidel relaxation performed only on new nodes and their “immediate” neighbors for discrete elliptic problems on adaptively refined finite element meshes using the newest vertex bisection algorithm. The proof depends on sharp estimates on the relationship of local mesh sizes and a new s...
متن کاملA Comparison of Geometric and Algebraic Multigrid for Discrete Convection-diffusion Equations
The discrete convection-diffusion equations obtained from streamline diffusion finite element discretization are solved on both uniform meshes and adaptive meshes. The performance of geometric multigrid method (GMG) and algebraic multigrid method (AMG), both as a solver and as a preconditioner of the generalized minimal residual method (GMRES), are evaluated. Our numerical results show that GMR...
متن کاملMultigrid Waveform Relaxation for the Time-Fractional Heat Equation
In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We deve...
متن کاملOptimal-order Nonnested Multigrid Methods for Solving Finite Element Equations Iii: on Degenerate Meshes
In this paper, we consider several model problems where finite element triangular meshes with arbitrarily small angles (high aspect ratios) are utilized to deal with anisotropy, interfaces, or singular perturbations. The constant-rate (independent of the number of unknowns, the smallest angle, the interface discontinuity, the singular-perturbation parameter, etc.) convergence of some special no...
متن کاملA hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure
This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 17 شماره
صفحات -
تاریخ انتشار 1996